Non-Embeddability of Geometric Lattices and Buildings
نویسندگان
چکیده
منابع مشابه
Semisimplicity, Amalgamation Property and Finite Embeddability Property of Residuated Lattices
In this thesis, we study semisimplicity, amalgamation property and finite embeddability property of residuated lattices. We prove semisimplicity and amalgamation property of residuated lattices which are of purely algebraic character, by using proof-theoretic methods and results of substructural logics. On the other hand, we show the finite model property (FMP) for various substructural logics,...
متن کاملInfinite generation of non-cocompact lattices on right-angled buildings
Tree lattices have been well-studied (see [BL]). Less understood are lattices on higherdimensional CAT(0) complexes. In this paper, we consider lattices on X a locally finite, regular right-angled building (see Davis [D] and Section 1 below). Examples of such X include products of locally finite regular or biregular trees, or Bourdon’s building Ip,q [B], which has apartments hyperbolic planes t...
متن کاملLattices in Hyperbolic Buildings
This survey is intended as a brief introduction to the theory of hyperbolic buildings and their lattices. Hyperbolic buildings are negatively curved geometric objects which also have a rich algebraic and combinatorial structure, and the study of these buildings and the lattices in their automorphism groups involves a fascinating mixture of techniques from many different areas of mathematics. Ro...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولEnvelopes of Geometric Lattices
A categorical embedding theorem is proved for geometric lattices. This states roughly that, if one wants to consider only those embeddings into pro-jective spaces having a suitable universal property, then the existence of such an embedding can be checked by seeing whether corresponding properties hold for many small intervals. Tutte's embedding theorem for binary geometric lattices is a conseq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2014
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-014-9591-8